
Accel 2 Compiler (19xx)(Southern Software)[a][PDF].pdf

ACCEL2 COMPILER for TRS-80 BASIC: OPERATING INSTRUCTIONS.

 ACCEL2 is an advanced version of ACCEL, Southern Software's compiler for TRS-80 BASIC.
ACCEL will compile programs in the Leve12 language, while ACCEL2 will compile tire DISK BASIC
extensions as well. (These extensions are sometimes referred to as Level3).

 ACCEL2 occupies 5632 bytes at compile-time. This relatively low size is achieved by a
technique of selective compilation. For instance I/O statements such as PRINTor INPUT are
not translated at all but remain in the compiled program in their source form, and are
executed by the resident BASIC interpreter. Statements involving INTEGERS and flow-of-control
statements (GOTO, GOSUB, RETURN) are, by contrast, translated to directly-executed Z80
machine-instructions. Other, more complex statements are translated into calls to ROM
routines. ACCEL2 selects more statements for translation than ACCEL, notably those involving
STRINGS and SINGLE and DOUBLE data-types. ACCEL2 also translates references to
one-dimensional array elements, and translates more functions than ACCEL.

ACCEL2 SUPPLIED ON TAPE OR WAFER.

 If you have purchased ACCEL2 on diskette, skip the next four sections. Installation from
EXATRON wafer is similar to installation from tape, and is covered in these sections.

 The tape or wafer supplied is self-relocating. This gives you the freedom to load the
compiler anywhere in memory you please. It also provides the freedom to make mistakes, so
please check all address arithmetic carefully. You need only perform the installation
operation once, and then you can take your own back-up copies on tape or disk, for subsequent
direct loading.

 You must load the tape supplied under Level2 (not DISK BASIC) using the SYSTEM command.
It will load itself at locations 18944 and up, and then, under your control, will relocate
itself to any chosen location above this. The compiler will not run correctly unless it is
loaded in PROTECTED memory. Depending on how much RAM you have, and on what other
machine-language programs you want resident, decide where you want to locate the compiler.
The table overleaf gives addresses that are suitable if you want to load the compiler as high
in memory as possible. For the main text, we will assume as an example that ACCEL2 is loaded
on a 32K machine. In this case your answer to the initial MEMORY SIZE: question will be
calculated as follows:

49152 (Upper limit of memory on a 32K machine)
-5632 (Size of ACCEL2 compiler)

43520 = "M", answer to MEMORY SIZE?

Notes:

1) On Video-Genie (PMC-80) you don't get the MEMORY SIZE? prompt. However, on power up the
machine gives you the opportunity to enter a number after the first READY?. This is exactly
the same number referred to as "M" in these examples.

2) If you are going to use TSAVE to make either a tape backup copy of ACCEL2, or to save the
compiled program, then allow a further 512 bytes of protected memory, i.e. set M=43008
instead.

TABLE OF USEFUL MEMORY ADDRESSES.

 This first table gives values of addresses you can use in order to locate ACCEL2 as high
in your machine as possible, (assuming you have no other machine-code programs above it).

16K 32K 48K

32767
27136
26624
27136-32767
27136-28415
27136-28671

49151
43520
43008
43520-49161
43520-44799
43520-45055

65535
59904
59392
59904-65535
59904-61183
59904-61439

Top-of-memory address
Start of ACCEL2, MEM SIZE
MEM SIZE,(room for TSAVE)
BACKUP range to save ACCEL2
Run-time routines, for tape
Run-time routines, if disk used

 This second table gives address ranges you can use when compiling programs to sell on
a smaller machine, They ensure that only the minimum amount of ACCEL2 (i.e. the run-time
routines) resides in the end-user's smaller memory.

16K 32K Target machine size

31488-37119
31488-32767

31232-21063
31231-32767

47872-53503
47872-49151

47616-53247
47616-49151

ACCEL2 address range, on your machine, TAPE only
Run-time routines, in end-user's machine

ACCEL2 address range, on your machine, if DISK used
Run-time routines, in end-user's machine

LOADING THE TAPE SUPPLIED.

To load the tape or wafer supplied, type responses as follows:

1) MEMORY SIZE? 43520 (enter) (or your value of "M").
 RADIO SHACK LEVEL II BASIC
 READY

2) SYSTEM (enter) or 2) @LOAD1 for EXATRON wafer.
 Now continue at step 6, below.
3) *? ACCEL2 (enter)

4) Tape loads

5) *? / (enter)

6) TARGET ADDR? (enter) (or any chosen protected address).
 READY

Notes:

1) The tape loading process at step 4 is a standard core-image tape load, and is subject to
the usual variability on volume, head alignment, etc, A pair of asterisks will blink on the
display, If no asterisks appear, or if a C is displayed, then there has been a loading error.
Retry from step 1 with a different volume setting. Two copies are supplied on the tape, in
case one gets damaged. Damage is almost invariably due to either a tape kink (a tiny fold in
the tape) or to recorded noise, caused by RESETTING the computer in the middle of a tape
load. (Always stop the cassette player before hitting RESET on a bad load),

2) Step 6 lets you relocate the compiler anywhere in protected memory. If you just hit enter,
then it relocates to M, the answer to the MEMORY SIZE question. If you have other
machine-code programs you want to hold concurrently in memory, then you may wish to respond
with a value different from M.

3) If you have a Stringy Floppy controller active, then you may find that the MEMORY SIZE
value has been modified by the activation process, In thus case type in the explicit value of
TARGET ADDR, and do not rely on the default.

4) On Video-Genie, for (enter) read NEW LINE key.

SAVING A BACK-UP.

 You can now save your own, fixed-location back-up copy of ACCEL2. This can be on tape,
disk, or wafer. It will be shorter than the original file, but more important, it will load
under either Level 2 or DISK BASIC, and it will load directly at its final location, without
corrupting location 18944 and up.

A) Backup on tape.

 To prepare a core image tape, on Level 2 or DISK BASIC. you will nerd the Southern
Software utility TSAVE, or TRS TBUG. TSAVE is recommended, because it allows you to work in
decimal, not HEX, and to check the saved tape. In this example the memory range you need to
save is:

 43524 to 49151

 Using TSAVE, respond as follows:

 FILENAME? BACKUP (enter) (or your own file name)
 RANGE? 43520,49151 (enter)
 RANGE? (enter)
 START? 1740 (enter) (dummy start address)
 Tape records...
 Reposition, and type C, to check tape.

 This tape can be reloaded by:

 SYSTEM (enter)
 *? BACKUP (enter) (or your own filename)
 Tape loads...
 *? / (enter)
 READY

B) Backup on Disk.

 Go into TRSDOS (or NEWDOS) from Level 2 by hitting RESET. (This will not destroy the
stored image of the compiler).

 Type: DUMP ACCEL2/CIM (START=43520,END=49151)

 This file can be reloaded under TRSDOS by typing LOAD ACCEL2/CIM
 (When you enter Disk BASIC after loading ACCEL2/CIM in the future, be sure to set MEMORY
SIZE to 43520, or to your value of M).

C) Backup on Wafer.(EXATRON Stringy Floppy commands assumed).

 The address to save is 43520, with length 5632. Because 43520 is not representable as an
INTEGER, you will have to type it in modulo 65536, i.e. as -22016.

 So type @SAVEn,-22016,5632

 This can be reloaded (under Level 2 or DISK BASIC) by @LOADn

ACCEL2 SUPPLIED ON DISKETTE.

 There are 4 versions of ACCEL2 on the disk, located in memory at the following
addresses:

1) ACCEL2A at 59904 for a 48K system.
2) ACCEL2B at 43520 for a 32K system.
3) ACCEL2C at 47616 to develop programs on a 48K system, for sale on 32K.
4) ACCEL2D at 31232 to develop programs on a 32K or 48K system for sale on 16K.

 For the following example use either ACCEL2A or ACCEL2B, according to your memory size.
Load the compiler under TRSDOS (or NEWDOS) by LOAD ACCEL2A (or LOAD ACCEL2B). When you
enter disk BASIC set MEMORY SIZE to 59904 or 43520.

 You will only need to use ACCEL2C or ACCEL2D if you are compiling a program for sale to
run on a smaller machine, See the later section on "SELLING COMPILED PROGRAMS".

CREATING A SAMPLE PROGRAM.

 Despite the triviality of the following example, it does illustrate most of the
mechanics of compiling and saving a compiled program, and it should be followed through to
completion.

 Under Level 2 or DISK BASIC type

 AUTO
 10 DEFINT I-J
 20 FOR I=1 TO 1000:NEXT
 30 A$=A$+"*"
 40 PRINT J; A$;
 50 J=J+1
 60 IF J<5 THEN 20
 70 STOP

 List the program, check it, run it, and change it, if necessary. Once you have compiled
it, you will no longer be able to EDIT it. So SAVE it on tape, or disk.

COMPILING THE PROGRAM.

 To invoke ACCEL2 you must first "activate" the compiler, and then use its builtin commands.
Activate it by branching to its first location:

 SYSTEM (enter)
 *? /43520 (or your value of M)
 READY

 The ACCEL2 builtin commands are all BASIC keywords, preceded by a slash (/), (Under
NEWDOS80, precede the slash by a blank). To compile, type:

 /FIX (enter) (i.e. FIX program in machine-code)
 ACCEL2 prints out 5 values, the changing program size.
 READY

 Use of the word FIX is intended to remind you that your BASIC program has now been
irreversibly converted to machine-code, You cant EDIT it in any way, but you can LIST it.
Shown in comparison with the original, it will look like this:

Before Compilation Compiled by ACCEL2
10 DEFINT I-J 10 DEFINT I-J
20 FOR I=1 TO 1000:NEXT 20 REM
30 A$ =A$+"*" 30 REM
40 PRINT J; A$; 40 PRINT J; A$;
50 J=J+1 50 REM
60 IF J<5 THEN 20 60 REM
70 STOP 70 STOP

Notes:

1) Machine-code lines appear in the compiled program as REMarks. (The actual machine-code
itself follows the REMark, but is unprintable).

2) I and J were defined as INTEGERS in line 10, and as a result the machine-code compiled by
ACCEL2 will be much faster than if they had been float variables (SINGLE or DOUBLE).

3) ACCEL2 compiles line 30, the STRING assignment, although ACCEL would not.

4) DEFINT, PRINT and STOP were not compiled, but the run-time environment is smart enough to
ensure that the BASIC interpreter is passed control for these statements, and that its
understanding of the variables, A$ and J is the same as that of the compiled code.

RUNNING THE COMPILED PROGRAM.

 RUN (enter)
 0 * 1 ** 2 *** 3 **** 4 ***** (program runs)
 BREAK IN 70
 READY

 A second RUN will rerun the program, GOTO 10 or GOTO 20, etc. will reenter the program
without resetting J to 0 or A$ to null. Notice that the compiled program runs much faster
than the original, but is compatible in other respects. RUN it again, but hit BREAK to
interrupt the program before completion. Note that the interrupt "takes" in line 40, not one
of the machine-code lines. Type ?I;J;A$ to interrogate the current values of the variables.
Type A$="A", and then CONT to continue execution, with a modified value of A$. Turn trace on
by typing TRON, and rerun the program, Only the uncompiled lines are traced. Turn trace off
again with TROFF.

 Once you have compiled a program, you can no longer use the commands EDIT, AUTO, CLOAD?,
CSAVE, DELETE, MERGE or SAVE. This is because the Machine-code in the compiled lines may
contain bytes that are treated as control codes by the interpreter. So use of these commands
may cause an infinite loop, or a machine reboot. To get the machine back to its normal,
editable state, you must use NEW or CLOAD, or in DISK BASIC, LOAD or RUN "program-name". All
of these destroy the compiled program.

SAVING THE COMPILED PROGRAM.

A) On tape:

 Saving the compiled program on tape has the merit that the single tape file will be
self-contained, Using the SYSTEM command, you can load the tape at a later date, or on
another TRS-80, and the program will run, independent of the compiler. However, to save the
tape you will need Southern Software's TSAVE. (TBUG is not satisfactory). Relocate TSAVE in a
separate area of protected memory, prior to compilation, or build yourself an
absolute-address copy of TSAVE to load on top of the compiler (not the run-time routines)
after compilation,

 Give the following responses:

 FILENAME? SAMPLE (or your own file name)
 RANGE? 16512,16863 (save control storage)
 RANGE? 16548↑,16635↑ (save the compiled program)
 RANGE? 43520,44799 (save the run-time routines)
 RANGE? (enter)
 START 1740 (dummy start address)

Notes:

1) Locations 16512 to 16863 contain control information such as program start and end
address, dictionary size, etc. MEMORY SIZE is also implicitly set, when this tape is
reloaded, to what it was when saved,

2) 16548↑ to 16635↑ means save the range defined by the values contained in these locations.
This includes the compiled program and its dictionary of current variables, but excluding the
array variables.

3) To run the compiled program you must have available the ACCEL2 run-time routines, (the
routines that interface with BASIC), and these routines must be at the same location in
memory as they were when the program was compiled. For ACCEL2 these routines constitute the
first 1280 bytes. So the values in this third range depend on where you have loaded the
compiler, You need not save this range if you know the compiler will already be loaded, when
you want to rerun the compiled program.

4) Tape is a cheap and fairly satisfactory way to distribute compiled programs for sale, and
the control values saved in the first range will ensure that the program will automatically
protect its own run-time component, even if your customer forgets. If, as is likely, you are
compiling programs on a large memory, for sale to users with a smaller memory, e.g. 16K, then
you need ensure only that the bottom 1280 bytes of ACCEL2 lie within the 16K, i.e. the bulk
of the compiler can reside above this boundary.

5) On Video-Genie, use the ESCAPE key for upward arrow.

B) On Disk:

 ACCEL2 contains its own built in routines to save the compiled program on disk.

 /SAVE "PROGRAM" (enter) (or any valid FILESPEC) will save the compiled program.
 /LOAD "PROGRAM" (enter) will reload the saved program.
 /RUN "PROGRAM" (enter) will load and run it.

 There are complex rules concerning the name of the saved program, and how these can be
used from another compiled or uncompiled program. These are described later.

RELOADING the COMPILED PROGRAM.

A)From Tape:

 Type:

 SYSTEM (enter)
 SAMPLE (enter) (or your own file name)
 Tape loads...
 *? / (enter)
 READY
 RUN (enter)
 0 * 1 ** 2 *** 3 **** 4 ***** (program runs)
 BREAK IN 70
 READY

B)From Disk:

 You must load the compiler first under TRSDOS (or NEWDOS). If you dont want to do
any compilations, then you can produce a core-image file which is only the first 1280
bytes of ACCEL2, and load this instead. But you must also allow a further 256 bytes for
the disk loading and saving buffer immediately above this. I.e the full run-time
component when using disk occupies the first 1536 bytes of the product.

 When loading a compiled program from disk, you must ensure that the environment is
the same as it was when the program was compiled and saved, namely:

o MEMORY SIZE the same.
o NUMBER OF FILES the same.

 In DISK BASIC, with the run-time component loaded, you can use ACCEL2's built in
commands to load or run a program. To do this, ACCEL2 must be activated, by branching to
its starting location. However do not activate it if it is already active. (This will
cause a REBOOT).

 /LOAD "PROGRAM" will load the saved program into memory.
 /RUN "PROGRAM" will load and run the program.

 When loading or saving compiled programs you may encounter various disk errors.
These are either reported in the usual way by DISK BASIC, e.g. FILE NOT FOUND, or if they
are detected by ACCEL2. as
 FILE ERROR CODE: n

 The value of n is as documented under TRSDOS Error Codes in section 6-12 of the
TRSDOS & DISK BASIC reference manual.

MORE ON COMPILER ACTIVATION.

 The TRS-80 Level2 code in ROM provides (very intelligently, and with a great deal of
fore-thought) a table of transfer addresses (in RAM) through which flow passes at certain
key points of execution. ACCEL2 uses 3 of these to get control in the following
situations:

1) At the beginning of execution of each program statement.
2) At the beginning of execution of each direct command.
3) During the execution of RUN, NEW, CLEAR and END.

 When you branch to the starting address of ACCEL2 it enables the first two of these.
(The third is handled internally). Because ACCEL2 then gets control on each command or
statement, it is able to support new commands of its own, which it chooses to distinguish
with a / prefix. Many other products use a similar technique. ACCEL2 attempts to coexist
with these products by preserving the original transfer address, during activation, and
branching to it, when it has finished its own work. Other products you may want to use in
conjunction with ACCEL2 may not be so kind, but may simply overwrite the original
transfer address with their own, thus "disabling" any other product playing the same
trick. If you encounter this problem, solve it by activating ACCEL2 last.

 Inadvertent reactivation is ignored by the compiler. However, once a switch has been
enabled, it would be a disaster if the compiler is destroyed in memory while the switch
is still active. So ACCEL2 supports a command /RESTORE which will reset the transfer
values to their original values, i.e. will deactivate itself. Use this before you
overwrite ACCEL2 with another program. Otherwise you can leave it active indefinitely.

COMPILING EXISTING PROGRAMS.

 Having tried out the mechanics of compilation on the sample program, you will now
want to apply ACCEL2# in earnest, to a real application. Before doing so, however, you
should refer to the restrictions at the back of this document. You may have instant
success with your own programs. This depends on how tidy and structured a programmer you
are. The compiler relies on your programs obeying certain BASIC language rules which are
not enforced by the BASIC interpreter, of which the most important are:

o The variables must be named in a way that is consistent, whether the program is
compiled from top to bottom, or whether the program is interpreted dynamically.
o The FOR-NEXT loops must be properly nested and structured, both statically and
dynamically.

 In one independent sample of 72 BASIC programs only 2 failed, due to bad FOR-NEXT
structuring, and none due to inconsistent naming. However this sample was published,
educational material, written in a plain, explicit style, If your style is less
disciplined, then you may suffer a greater percentage of first-time failures.

1) Check your program for CLEAR statements. These reset the meaning of any DEF or DIM
statements, and can lead to inconsistent names. If possible, ensure the program starts
with CLEAR, and has no other CLEAR statements. Preferably, use explicit DIM statements
for all arrays.

2) Check that each FOR statement pairs with one and only one NEXT statement, Watch for
RETURN statements which exit from an uncompiled FOR loop, or GOTOs out of FOR loops which
could have the same effect.

CHAINING PROGRAMS.

 ACCEL2 allows you to chain programs together, i.e. to proceed through a sequence of
routines, each invoking the next from disk, and being overlaid by it. The chained
programs may be either compiled or interpreted, or a mixture. You will need to debug
these segments in an arbitrary order, compiling each one after it is checked out, and you
will not want to change the chaining program, when the program it chains to is compiled.

 The way this is achieved is as follows: /SAVE filespec saves the current compiled
program. If filespec contains no file extension (/ qualifier), then the program is saved
with this name. I.e. SAVE "PROG" will overwrite any file called PROG, whether it is a
source program or a compiled program. But if the file has an extension then
a) It must be a 3-character extension, and
b) /SAVE will implictly change the extension to ACC.

 If your source program is called "PROG/BAS", for example, then after compilation,
/SAVE "PROG/BAS" will save the compiled program as "PROG/ACC". (It will also save e.g.
"PROG/NEW" as "PROG/ACC" as well, so be careful only to use one extension type for
programs you intend to compile).

 /RUN filespec or /LOAD filespec also work in a similar way, namely, if the filespec
has no extension, then it is treated as the name of a compiled program, and that file is
loaded. (If the file is not a compiled program, then an error will result), If, however,
the filespec contains an extension then
a) It must be a 3-character extension, and
b) ACCEL2 will attempt to load the file with the extension ACC, but
c) If no such file exists, then ACCEL2 will pass control to the BASIC interpreter causing
it to LOAD or RUN the program as a BASIC source program.

 These rules apply whether the filespec is a constant (as shown) or whether it is an
expression, and they apply if the /SAVE, /LOAD or /RUN statements are executed from the
keyboard as direct commands, or if they are within a program (which in turn can be
compiled or uncompiled). The filespecs can also include password or drive-number
qualifiers.

 These rules enable you to debug and incrementally compile a suite of programs
provided
a) You use 3-character extensions on your program filenames.
b) You replace all RUN filespec statements in your programs by /RUN statements.

 If this aspect of ACCEL2 is important to you, follow the next example through:

PROG1/BAS:
10 FOR I%=1 TO 5000:NEXT
15 PRINT"PROG1"
20 /RUN "PROG2/BAS"

PROG2/BAS:
10 FOR I%=1 TO 5000:NEXT
15 PRINT"PROG2"
20 /RUN "PROG1/BAS"

 Save these two programs on disk (without compilation) as "PROG1/BAS" and
"PROG2/BAS". RUN either, and they will loop for ever, each calling the other. Of course
you must have ACCEL2 active while they are running, or the BASIC interpreter will reject
the /RUN statements, Interrupt the sequence by hitting BREAK.

 Now compile one of the programs, PROG2 say, and save it by /SAVE "PROG2/BAS", Again
RUN either program, and they will loop as before, PROG1 running interpretively, and PROG2
compiled. (You can tell this from the relative time they take to execute). Finally
compile the other program, PROG1, and /SAVE "PROG1/BAS". Now either RUN or /RUN either
program to recreate the loop, this time with both programs running compiled.

Notes:

1) The filespec name on disk is of course "PROG1 /ACC" for the compiled program, so
RENAME, COPY or KILL, etc., must use this name,

2) If you save a file "X" under TRSDOS, it will normally find "X", if it exists, and
write the new file on top of the old, on the same disk drive. If it cant find "X", it
writes the file on drive 0. These rules apply to the name "X/ACC" in /SAVE, not to
"X/BAS".

SELLING COMPILED PROGRAMS.

 One of the major attractions of a BASIC compiler is that it enables you to write
BASIC programs for sale which, with care and tuning, can be comparable in performance
with machine-code programs, Secondly, and no less important, a compiled program is very
difficult to steal. It can be copied, of course, since any file can be copied byte for
byte, but it cannot be modified, except by the owner of the original source BASIC. And of
course you dont have to release this when you sell a compiled program.

 Although tape is an unpopular medium, it has a number of very significant
advantages. Cassettes are very cheap, and therefore expendable or replaceable. They are
small and light to post, and will survive violent handling, unlike diskettes which need a
lot of protection. Finally the TRS-80 built in SYSTEM command is part of ROM, and
therefore consistent on all machines, and it is powerful enough to load any number of
core-image segments directly into RAM, without restriction.

 So if you can ship on tape, do so. The procedure for creating sale tapes is exactly
the same as that described in saving the compiled example program on tape. Use the
addresses in the earlier table to minimise your use of the customers memory to only the
run-time component of ACCEL2. You have to save the three ranges

a) Control storage, (including program size, memory size, etc).
b) The program itself, including its dictionary of scalar (nonarray) variables.
c) The ACCEL2 run-time routines which interface the running program to interpretive
BASIC.

 Whether on tape or disk, do NOT save the whole of ACCEL2. or you will be regarded as
infringing the copyright. Also, you must give an acknowledgement in your program
documentation that it was compiled by Southern Software's ACCEL or ACCEL2.

 On disk the situation is not so simple. The DUMP routine provided under TRSDOS (or
NEWDOS) will only save a single contiguous core image, and it refuses to save any range
below HEX'7000'. These two restrictions make it more difficult to sell a compiled program
as a single file on disk. What you must do instead is to /SAVE the compiled program as
described, as a single file, "PROG/ACC" say, and also to DUMP on the sale diskette the
core-image of the run-time component of ACCEL2, as a separate file, LOADER/CIM, say.
(Again, do not save the whole compiler). This core image is the first 1280 bytes of
wherever you have located ACCEL2, but you must also allow a further 256 bytes of I/O
buffer above this in the purchaser's memory.

 As an example suppose you want to sell a program "PROG/ACC" to run on a 16K machine
(although you have a 32K machine). The full sequence is as follows:

1) The required location for ACCEL2 is 32768-1280-256 = 31232. Under Level2 set this as
MEMORY SIZE, load the original selfrelocating version of ACCEL2, and locate it at 31232.
(If you have purchased ACCEL2 on disk, then there is already a version at this location).

2) Return to TRSDOS and DUMP this version of ACCEL2 as a core-image file for your own
use.

3) Enter DISK BASIC setting the NUMBER OF FILES to whatever will be required by PROG/ACC,
and the MEMORY SIZE to 31232 again.

4) LOAD the source for PROG/ACC, compile it, and then /SAVE the compiled program as
PROG/ACC as described earlier, but onto a new master disk.

5) Return to TRSDOS and DUMP the run-time component of ACCEL2 on this new master disk, as
a file called LOADER/CIM, say. I.e. DUMP LOADER/CIM (START=31232,END=32511).

6) This master disk will now contain two files PROG/ACC and LOADER/CIM, not the full
core-image of ACCEL2. TRS BACKUP is now a convenient way of making copies of this disk
for sale.

Your operating instructions must now include the following directions to the end-user.
(Alternatively, you can automate the procedure with the use of Southern Software's
Command-List processor, EXEC).

1) From TRSDOS load the run-time routines by LOAD LOADER/CIM.

2) Enter DISK BASIC setting NUMBER OF FILES to N (the number you used earlier) and MEMORY
SIZE to 31232.

3) Activate the loader by SYSTEM (enter) and *? /31232.

4) Load the compiled program by /LOAD "PROG/ACC", and follow this by RUN. Or use /RUN
"PROG/ACC". (It is unnecessary to confuse the issue by saying that /RUN "PROG/BAS" would
also work).

EXECUTION PERFORMANCE.

 The aim of using a compiler is to improve execution speed. But the compiler cannot
do better than the machine on which the program runs. The Z80 CPU chip is remarkably
cheap, reliable, and fast, but it lacks many common operations (such as multiply and
divide), These have to be executed via calls to ROM routines which provide the required
function (e.g. multiply by successive additions), and this is of course relatively slow.
The complex table at the end of this section is a guide to what features can be improved
by compilation, and by how much. It remains one of the programmer's tasks
(unfortunately), to match the requirements of the problem to the capabilities of the
underlying computing system, The extra effort needed to optimise performance could be
thought of as a form of machine-code programming. It can produce results comparable in
performance with real assembler language coding, but it is incomparably easier, because
debugging is in BASIC, using PRINT statements, TRACE, etc.

 The result of compilation is a program which is a mixture of BASIC statements and
directly executing Z80 machine-code instructions. The Z80 can execute branches and
subroutine calls, and can perform logic and arithmetic (excluding multiply and divide) on
INTEGERS, but not on SINGLE or DOUBLE precision floating-point numbers. Nor can it
directly manipulate the internal form of BASIC strings, although it can move strips of
bytes from one variable to another quite efficiently. (The difficulty with strings is
that their lengths vary dynamically). With the exception of SET and RESET, ACCEL confines
its translation to those operations that can be expressed directly in machine-code, but
ACCEL2 also translates many statements to sequences of calls to routines in ROM, or to
its own run-time component.

 In addition to the actual execution of the program operations, there is the
"resolution" of the variable names and line-numbers, Here A compiler comes into its own.
The BASIC interpreter resolves each name by a sequential search through its dictionary
(table of variables), every time the variable is referenced during execution. In contrast
the compiler allocates storage for the variable once during compilation, and then
replaces each compiled reference by a direct machine address, rather than a dictionary
search. Similarly each reference to a line number in GOTO or GOSUB translates to a simple
branch address, whereas the BASIC interpreter has to search the program sequentially from
the top to find the target line.

 One effect of BASIC's two forms of sequential search is that the running time of a
program depends on how large it is. The more variables you have in your program. then the
longer the average time taken to find each one, and the more lines in your program, the
longer it takes to execute each GOTO or GOSUB. The speed of the compiled code, on the
other hand, is independent of program size and number of variables. This means that it is
quite impossible ever to make a firm statement about relative performance, since you
cannot say how long a statement such as A = B + C will take under the interpreter. It
depends on context. Similar arguments apply to program size before and after compilation.
Programs may contain REMarks and blanks. BASIC names can be any length, After compilation
all these uncertainties disappear - the REMarks and blanks are removed (from translated
code) and the variable and line references are all two-byte addresses.

 So the table that follows is in one sense very pessimistic. The timings were all
taken on the smallest program in which they could be measured, i.e. a simple FOR-loop.
There were no blanks or remarks in the source, and the names were all two bytes long. The
performance improvement measured for GOTO, for example, is 176 to 1, but in a large
program this could be even greater. But the catch is that this figure may be irrelevant.
Because the directly executing operations are so fast, they scarcely contribute to the
execution total at all, and performance becomes dominated by those operations that are
not compiled, e.g. READ, by the out-of-line subroutines, e.g. Multiply, or by I/O.

 Apart from indicating performance gains the table also summarises those language
features that ACCEL2 will translate, rather then leave to BASIC. CLEAR, RUN and RESTORE
are also translated, but for expediency rather than as a performance improvement.
Anything else not shown in the table will cause the whole statement in which it appears
to be left in its interpretive form.

SPEED/SPACE Performance Table.

Speed Improvement(Ratio) operation Space Degradation(Bytes)

INT SNG DBL STR INT SNG DBL STR

121.0
29.5
48.2
55.3
61.8
50.6
2.5
1.1

83.5
11.4
80.6
7.7

17.7
17.4

3.7
83.8
3.1
2.8
2.8
2.7
3.2
1.2

22.9

5.7
3.7
2.7
3.7

3.2
71.5
2.5
2.3
2.0
2.0
2.0

 1.02
85.7

4.2
3.1
2.2
3.1

7.9
30.4

14.9
2.5

2.1

9.9

Assignment (LET)
Array Ref (1-dim.)
AND and OR
Compare (=)
Add,Concat (+)
Subtract (-)
Multiply (*)
Divide (/)
Constant Reference
FOR-NEXT
POKE
SET and RESET
IF-THEN-ELSE
ON expr GOTO

5
16
5

11
0
3
5
5
0

29
7
6

15
12

14
24
14
26
2
2
2
2
6

19
18
21
18

14
25
14
25
2
2
2
2

10

19
18
21
18

14
20

10
1

7

21

 Function

5.6
inf
128.0

6.4
inf
inf

6.6
inf
inf

inf

56.5
4.7
3.2
3.1
3.4

25.4
24.9

POINT
VARPTR
PEEK
LEN
MID$
LEFT$
RIGHT$
CHR$
ASC
CVI

3
-3
0

9
-9
0

9
-9
0

-9

1
5
4
4
2
7
8

148.8
176.4

GOSUB-RETURN
GOTO

4
0

Disclaimers:

1) No commitment is implied by these figures. They are subject to all sorts of
variability (e.g. time to reference a constant depends on the value of the constant being
referenced).

2) Speed ratios for STRINGS depend on length of strings, whether the string is a program
constant (a literal), whether the receiving string is tire sane length as the source
string, etc. Four-byte strings were used in measurements.

3) Use of "inf" (infinity) in the table means that the ratio could not be measured
meaningfully. E.g. the reference VARPTR(X) in interpreted BASIC always takes longer than
the reference to X. But in compiled code the reference VARPTR(X) actually takes less time
than the reference to X, if X is anything other than INTEGER.

4) Negative numbers in the space table mean that the compiled code occupied less space
than the original.

PERFORMANCE HINTS.

 Nothing the compiler can do will speed up I/O devices - disk, tape, printer, or
keyboard. But for processing limited by CPU speed, the following are good rules:

1) Always use INTEGER data types whenever possible, since these are the only data elements
the CPU can manipulate directly. You can qualify variable names with % to make them INTEGERS,
but better is to get into the habit of coding e.g. DEFINT I-P at the head of each program. In
particular use INTEGERS for any FOR-loop control variable.

2) Avoid continually processing DATA with READ statements. Rather, READ the data values once
into an array and process from that. This avoids the very considerable overhead of converting
the DATA constants from character to numeric on every use.

3) Translation of a statement from BASIC to machine-code is often prevented by the existence
of a single non-compilable operation or function. Check the compiled listing to see which
statements have been turned into REMarks. Then isolate non-compilable functions (or move them
out of a loop) in order to minimise their effects. Sometimes alternative techniques can be
used. E.g RND is a very expensive function indeed, and its use can often be circumvented.

4) Compilation of string expressions may be limited by complexity. In this case break the
statement down.

5) There is a well-known execution "hiccup" caused by string space "garbage collection",
(recovery of free space). ACCEL2 does not affect the actual garbage collection process, but
it does attempt to minimise its frequency of occurrence, by avoiding string space allocation
if possible. In particular, if string sizes match in assignment, then a spectacular
improvement may result.

COMMON PITFALLS.

1) Many programs have loops that are simply there to delay the process, e.g. to make a "ball"
moving on the screen go more slowly. Either lengthen these loops when the program is
compiled, or alternatively use SINGLE or DOUBLE control variables for the loop, since these
types of FOR-loops are not translated by the compiler.

2) 100 GOTO 100 is a common way of terminating a program to avoid the READY message
corrupting the screen. This loop cannot be interrupted by the BREAK key, and will need RESET.
Instead use

100 RANDOM:GOTO 100

3) If you choose different MEMORY SIZE settings from the example given in the text, or if you
position the compiler elsewhere in memory, then be sure the address arithmetic is correct.
This is very error-prone. Work it out on paper first, and type it in from the written copy.

4) When you have compiled a program, do not use the editing commands, since they will produce
completely unpredictable results. Always reset the machine state with NEW, LOAD, or CLOAD.

5) It is common practice to use DATA statements as a source of variable data. I.e. after
running the program once you EDIT new values into the DATA statements for the next run. This
isn't possible once the program is compiled, and an alternative will have to be used, i.e.
keyboard input, or files.

6) There is a hardware bug you may suffer from. Run the following program in BASIC:

DIM A%(10): PRINT VARPTR(A%(1)) - VARPTR(A%(0))

The answer should be 2 (since INTEGER variables occupy 2 bytes per element). If the answer is
3, you have a Z80 CPU bug, and you should compile all programs preceded by the REM NOARRAY
option (see below).

COMPILER OPTIONS.

ACCEL2 supports 2 compile-time options which control the level of translation,

EXPR or NOEXPR Optional compilation of expressions.
NOARRAY Suppress compilation of arrays.

 The EXPR option can be set on or off at any point in the program by inserting a REMARK
with the control word after it, i.e.

 REM NOEXPR or
 REM EXPR

 Each must be on a separate line, and each must be terminated by ENTER (Video Genie
NEWLINE), with no trailing spaces.

 REM NOEXPR will inhibit compilation of expressions, and hence of LET (assignment), FOR,
POKE, SET, RESET, and IF expressions. (GOTO, GOSUB, RETURN, ON and THEN/ELSE decisions are
always compiled). When compiling a large program for the first time there is no harm in
setting REM NOEXPR for the whole program. That way it is less likely to exceed your memory.
If this succeeds, build up the degree of compilation gradually.

 The NOEXPR option enables you to reduce the compiled program size, at the expense of
less performance improvement. Typically a small part of any program will be responsible for
the majority of the execution delay, whereas initialisation sections, and exceptional
conditions or error handling are not at all critical. Bracket the performance-critical
sections with:

 REM EXPR
 performance-critical section
 REM NOEXPR

In this way you can maximise performance, while minimising code expansion.

 REM NOARRAY is used in the same way as REM NOEXPR, except that it must apply to the
whole program, i.e. use it at the front or not at all.

 The TRS-80 supports adjustable-bound arrays, e.g.

 10 INPUT N:DIM A(N)
or
 10 DIM A(10):...
 20 CLEAR:DIM A(20)...

 ACCEL2 cannot cope with this degree of flexibility, and is unable to compile programs
containing references to such arrays, i.e. the program will fail. If you have such arrays you
must precede the program with REM NOARRAY.

COMPILE-TIME MESSAGES.

 These are messages you may get when compiling a program with ACCEL2,

OM OUT OF MEMORY. Compiler could not complete.
FC ILLEGAL FUNCTION. Disallowed statement, e.g. CSAVE.
NF NEXT WITHOUT FOR. FOR-NEXTs not statically matched.
LS STRING TOO LONG. Machine-code expansion exceeds 256 bytes. Simplify the line.
UL UNDEFINED LINE. Bad line number referenced in GOTO or GOSUB.
CN CANT CONTINUE. Compiler cant parse the statement. Check the line for a SYNTAX error.

 Note that ACCEL2 passes "illegal" statements through unchanged, e.g. @SAVE 1. This
permits the use of stringy floppy control statements in a compiled program (or any of the
many extended statement languages available today).

 During compilation 5 numbers are displayed. These are put out chiefly as an aid to see
how compilation is progressing. The first is the size (in bytes) of the original BASIC
program. The next 4 are the sizes of the program after each of the four compiler passes.

PASS 1 builds the variable dictionary, and modifies some of the source statements, e.g. DATA
statements are moved to the back. It removes REMarks, so the program size will usually go
down.

PASS 2 maps out exactly what code will be compiled so that the next pass will know where each
line will eventually be in memory. It does not change the program.

PASS 3 actually compiles the code, and is the slowest pass, and the one that expands the
text.

PASS 4 tidies up, removing flags used internally by the compiler from the program.

 Any diagnosed error will stop the compiler, and leave the program half-compiled. Dont
attempt to correct the error by editing. Type NEW and reload the program. (If NEW results in
SYNTAX ERROR, then compile this null program, and that will clear the problem).

RESTRICTIONS.

 Experience of early users of ACCEL and ACCEL2 has shown that some programs working under
BASIC may fail in execution, or even in compilation. These failures were almost always due to
the program infringing one or more of the restrictions below, rather than as a result of a
compiler bug. So if you encounter a problem, believe that it is as a result of a restriction,
and identify the problem by tracing the program, inserting diagnostic PRINT statements, or by
breaking the program down into segments.

 Certainly users who create a program from scratch, compiling occasionally as they go to
check progress rarely suffer any real constraints. ACCEL2 relies on your program obeying
certain BASIC rules which are not checked by the interpreter, and indeed are not necessarily
documented in the TANDY manual. An example is the "strength reduction" applied by the
interpreter. If two INTEGER variables are added, their result may exceed the maximum INTEGER
size (32767). In this case the interpreter turns the temporary result into a float (SINGLE)
variable. No compiler can afford to produce code to check for this contingency, and indeed it
is certain that the original BASIC language designers would have regarded this as an error.
Unfortunately the effect here is that compiled and uncompiled programs can give differing
results.

1) No redefinition of meaning of names.

 The names in your program must mean the same whether the program is read globally as the
compiler sees it, or executed dynamically, as the interpreter sees it. E.g.

 I=1 DEFINT I:I=1 is disallowed. (The interpreter will treat the first I as
SINGLE).

 You are unlikely ever to do this sort of thing deliberately, but it can come about, e.g.
if CLEAR is used other than at the top of the program. CLEAR resets variables types to
default (SINGLE), and may therefore cause a variable to change from INTEGER to SINGLE without
your meaning it to.

2) Dimensions must be constant.

 ACCEL2 cannot compile programs which contain either
 DIM A(N)
or
 DIM A(10) ...
 CLEAR
 DIM A(20) ...

 In either of these cases the program must be preceded by REM NOARRAY. Of course this
inhibits optimisation, and if possible it would be better to change the original program to
use fixed bound arrays.

3) The array dictionary is built dynamically.

 This is another, more subtle flavour to the above restrictions. When a compiled program
is saved on tape or disk the scalar (non-array) part of the dictionary is saved with it, So
when it's reloaded that dictionary is already in existence before you say RUN. But arrays are
sometimes very large, and saving them in this way would make the saved files unreasonably
big. So instead ACCEL2 relies on the run-time execution recreating the arrays again in
exactly the same place as they were when the program was saved. I.e. ensure that the flow
into your program passes through the DIM statements before any array element is used, or
ensure that all arrays that do not have DIM declarations have their elements first referenced
in the same order as the compiler will see them (top-to-bottom). Do not code e.g.
 10 GOTO 30
 20 A(1)=1
 30 B(1)=2
 90 A(1)=3
since the compiler will see A before B, whereas execution will see B before A. Ideally,
supply DIM statements at the front of the program (but after CLEAR) for all arrays.

4) FOR-NEXTs must be properly structured, statically and dynamically.

 Each FOR statement must belong with a unique matching NEXT. Two FORs cannot share the
same NEXT, and two NEXTs cannot share the same FOR. More difficult to spot are cases of bad
run-time nesting. The compiled code and the BASIC interpreter share the same run-time stack,
and this stack, is used by compiled code for RETURN, FOR and NEXT, The BASIC interpreter uses
it for any uncompiled FOR-NEXTs. If you exit from a FOR-loop without closing it (e.g. you
branch out of it, or RETURN out of it) then the stack entry for the FOR-loop is not cleared.
ACCEL2 is smart enough to pick up RETURN out of an unclosed compiled loop and to close the
loop automatically. It cannot handle the case of an unclosed, uncompiled loop however and
this may cause a wild branch, or a reboot. Also, it cannot trap GOTO out of a loop, because
the flow may branch back in, and continue from where the loop left off. To be safe, code as
follows:

OK BAD
10 FOR I=1 TO 10 10 FOR I=1 TO 10
20 IF I=5 THEN I=10:GOTO 50 20 IF I=5 THEN GOTO 60
30 ... (body) 30 ... (body)
50 NEXT 50 NEXT
60 OK, closed 60 NOT OK, open

 If you compile a working program and it fails wildly, then bad nesting is by far the
most likely cause. Running with trace (TRON) will usually identify the problem.

5) Error behaviour is not necessarily consistent.

 INTEGER overflow is nut diagnosed. E.g. IF A>B THEN may fail if A-B is greater than
32767, or less than -32768. Out-of-range arguments to string functions (e.g. MID$ offset and
length) are rounded modulo 256. Values out-of-range in ON statements are treated as zero, not
errors. Out-of-memory may nut be diagnosed at run- time, and may cause a wild branch, or a
reboot. Your program may contain errors which BASIC does not diagnose, but which the compiler
will reject, for instance bad syntax in an ELSE clause which is never executed.

 In general, programmed error handling (i.e. the use of ON ERROR) is unlikely to work.
This is firstly because the error you are trying to trap may not be caught by the compiled
code at all. But also the target line N of ON ERROR GOTO must be an uncompiled statement, or
the program will loop on the error. If you have ON ERROR GOTO N anywhere in your program,
then put a colon (i.e. a null statement, ":") at the front of line N.

6) Current line-number not maintained.

 Lines which start with statements that have been compiled to machine-code do not update
the current line number, which therefore remains set at the last executed non-compiled line.
Therefore BASIC diagnostic messages may be misleading, and RESUME (without line number) may
possibly fail by branching to the wrong line. TRON will give an incomplete trace. The BREAK
key will only interrupt in noncompiled lines.

7) Compiled programs may not be EDITED.

 When the machine holds a compiled program you may not use the commands EDIT, AUTO,
CLOAD?, CSAVE, DELETE, MERGE, and SAVE, and obviously these must not appear in a program you
try to compile, (This gives an ILLEGAL FUNCTION diagnostic), In addition GOSUB and REMARK
should not be used as keyboard (i.e. direct) commands.

8) No code expansion during compilation may exceed 256 bytes.

 This gives a STRING TOO LONG error, and the offending line should be broken up.

9) The name QX% is reserved. (QX% is used in the compiled code as a temporary variable).

10) Disk and Wafer operations are mutually exclusive.

 To save space, ACCEL2 puts the wafer saving and loading routines in the area used as a
256-byte buffer for disk SAVE and LOAD. Once you have used /SAVE, /LOAD, or /RUN, then you
cannot use /@SAVE, /@LOAD, or /@RUN.

11) USR calls are only optimised under Level 2 or TRSDOS2.3, not other operating systems.

ACCEL2 is distributed on an "as is" basis, without warranty, No liability or responsibility
is accepted fur loss of business caused, or alleged to be caused by its use.

 Video Genie and TRS-80 Level 2. RELOC

How to Load and Relocate a Southern Software Machine-Language Program.
--

 You choose the location of the program in memory, to suit your machine size. This MUST be in protected
memory, or the program will not run. So, taking account of your machine size, allow enough space for the program
itself, plus any other machine-language subroutines you may need, either above or below the program you are
loading.

 As an example, suppose you are loading Southern Software DLOAD (size 160 bytes). You have already loaded,
or are going to load, TRS KBFIX at the top of memory, and Southern Software TSAVE below DLOAD. Plan your memory
use as follows, working out the values (T) and (A) for your situation:

 PROG SIZE MACHINE SIZE
 (bytes) 4K 16K 32K 48K
Memory limit 20480 32768 49152 65536
Space for KBFIX 56 20424 32712 49096 65480
Space for DLOAD 160 20264 32552 48936 65320 (T)
Space for TSAVE 512 19752 32040 48429 64808 (A)

1)Turn on the computer. If you have a DISK system, enter Level2, not DISK BASIC.
2)answer the MEMORY SIZE question with your value of (A). (On Video Genie, this value is used after READY?).
3)prepare the cassette player to load the self-relocating program.

 TRS-80 You type:
4) > SYSTEM (enter)
5) *? DLOAD (enter) or your program name
6) After tape has loaded *? / (enter)
7) TARGET ADDR? Your value of (T)
8) READY

Notes:
1)At step 5 the tape will load and a pair of asterisks will blink on the display. If there are no asterisks, or
two unblinking asterisks, or C*, then there has been a loading error. Stop the recorder, reset, and retry with a
new volume setting.

2)At step 7, the program will relocate itself to address T. If instead of typing a value you just hit enter,
then the program will relate itself to A, the answer to the MEMORY SIZE question.

3)Under Level2, after relocation, the program is ready to be invoked with a USR(n) call, since the USR address
is automatically primed. However this does not work under DISK BASIC (or Level3), and you must additionally set
DEFUSRn to inform the system of this routine's address.

4)Once a program has been loaded and relocated, it can be dumped to a new tape using Southern Software TSAVE, or
TRS TBUG. Then it will load directly to its final location. Use of TSAVE has the advantage that several programs
can be dumped on a single file, which can also preprime the USR address.

5)During step 5, the program is temporarily load into locations 18944 and up. This means that
 a)You must perform all necessary relocating loads before loading a BASIC program, or entering DISK BASIC.
 b)The final location, T, of the self-relocating program can never be lower than 18960. (Hex 4A10).

6)If you run under DISK BASIC, then perform the initial self-relocating load under Level2, as described. Then
reenter TRSDOS (or NEWDOS, etc) and use the DUMP command to save the core image directly from its relocated
position. Subsequently you can LOAD the core image directly, under TRSDOS. But when you enter DISK BASIC,
remember to set MEMORY SIZE to leave this area of core protected, and remember that the top 64 bytes of memory
are corrupted by the DISK BASIC loader, and should not be used for programs.

 Video Genie and TRS-80 Level 2. HINTS

Hints on Tape Loading.

1) Listen to the tape to establish exactly where the data starts. Note this on the tape label.
2) Turn the volume down to zero, and "attempt" a tape load, very slowly increasing the volume until you get
asterisks on the screen. Stop the tape (not the computer), note the volume level, Reboot.
3) Turn the volume up to maximum, and "attempt" a tape load, very slowly decreasing the volume until you get
asterisks on the screen. Again, stop the tape, and note the vole,
4) Set the volume to slightly above the mid-point of the two extremes of volume, and attempt a real load.

Possible Tape or Recorder Faults.

1) Kink or fold in the tape. Even a minor fold may render the tape unloadable, (Southern Software tapes carry a
second copy of the file, in case the first gets damaged).
2) Noise caused by RESET when tape is running, Always stop the tape before hitting RESET.
3) Being small, all the plugs are prone to intermittent error and should be protected against movement.
4) Inconsistent tracking of the tape over the head.

 This list does not include poor tape quality, since it is very unlikely to be a problem, at the frequency
bits are recorded. However, you may have found that one make of cassette seems much better than another. This is
probably due to the construction of the cassette, rather than the tape. Generally more expensive cassettes run
more smoothly, and therefore reduce the chance of poor tracking of tape over the head.

How DATA is Recorded and Read.

 The computer contains hardware to generate an "above-and-below-zero" pulse, as shown below. This is fired
by direct program control. The output routine produces one such clock pulse every 500th of a second (by
looping). Data ones and zeroes are recorded as pulses halfway between these clock signals, A zero is the absence
of a pulse, a one is the presence of a pulse.

 The playback logic is analogous to a keyboard "debounce" routine, To read a single bit, start somewhere
near (A). Loop, until the hardware recognises a signal, at (B). This is a clock pulse. Now loop until that
signal is bound to have died away, and reset the hardware latch, at (C). Now wait an exact length of time, till
(D), and listen for another signal, YES, then it's a one, NO, then it's a zero. In either case reset the latch
after the sampling time, at (E), and loop again until the next time (A).

 As you can see, the TIMER must not be running during either record or playback, since exact looping times
are vital. Nor does the logic take time off to test the keyboard for the BREAK key. However tape speed is not
ultra-critical, since there is a resynchronisation wires at (A) on every bit.

